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I n t r o d u c t i o n

v

ı̂

̂

v =
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1
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v = −2× ı̂+ 1× ̂ = −2×
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1
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]
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1

]
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I n t r o d u c t i o n

Being not very rigorous, we can define a linear transformation as a transformation on
every vector on the plane that must satisfy 2 things:

1. Lines must be transformed into lines
2. The origin must remain in the same place

We will deal with the formal definition and rigor later...

P. Fagandini



I n t r o d u c t i o n

v

ı̂

̂
ı̂′

̂′

v ′
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I n t r o d u c t i o n

v

ı̂

̂
ı̂′

̂′

v ′

ı̂′ =

[
4
1

]
̂′ =

[
3
2
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I n t r o d u c t i o n

v

ı̂

̂
ı̂′

̂′

v ′

v = −2×ı̂′+1×̂′ = −2×
[
4
1

]
+1×

[
3
2

]
=

[
−5
0

]
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I n t r o d u c t i o n

v

ı̂

̂
ı̂′

̂′
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I n t r o d u c t i o n

v

ı̂

̂
ı̂′

̂′

v ′

w =

[
x
y

]
lands on x×

[
4
1

]
+y×

[
3
2

]
=

[
4x + 3y
1x + 2y

]
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I n t r o d u c t i o n

v

ı̂

̂
ı̂′

̂′

v ′

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
= x × ı̂+ y × ̂[

4 3
1 2

] [
x
y

]
=

[
4x + 3y
1x + 2y

]
= x × ı̂′ + y × ̂′
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I n t r o d u c t i o n

What about another vector in the same “direction” than v? say

z =

[
1

−0.5

]
...

[
4 3
1 2

] [
1

−0.5

]
=

[
2.5
0

]
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I n t r o d u c t i o n

v

z ı̂

̂
ı̂′

̂′

z ′v ′
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I n t r o d u c t i o n

So transforming two vectors in the same line, they both end up also in the same line...
keep this in mind.
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I n t r o d u c t i o n

Could we take back ı̂′ to ı̂ and ̂′ to ̂?

Sure, if we apply the transform [
0.4 −0.6
−0.2 0.8

]
[
0.4 −0.6
−0.2 0.8

] [
4 3
1 2

]
=

[
1 0
0 1

]
Applying the inverse!
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I n t r o d u c t i o n

The important thing is that: if the vectors are linearly dependent, then we cannot
invert the matrix, we just saw that two vectors that reside on the same line, end up in
the same (although probably a different one) line.
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I n t r o d u c t i o n

There are a couple of interesting vectors on the whole space when we apply this linear
transformation...
Take for example the following vector:e =

[
−1
1

]

[
4 3
1 2

] [
−1
1

]
=

[
−1
1

]
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I n t r o d u c t i o n

ı̂

̂
ı̂′

̂′

e

e = e′
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I n t r o d u c t i o n

ı̂

̂
ı̂′

̂′

e

e = e′

[
1 0
0 1

] [
−1
1

]
=

[
−1
1

]
=

[
4 3
1 2

] [
−1
1
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I n t r o d u c t i o n

ı̂

̂
ı̂′

̂′

ee = e′

e.v .1 =
[
−1, 1

]
, λ1 = 1
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I n t r o d u c t i o n

Or the vector:f =

[
0.9487
0.3162

]

[
4 3
1 2

] [
0.9487
0.3162

]
=

[
4.7434
1.5811

]
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I n t r o d u c t i o n

ı̂

̂
ı̂′

̂′

e=e’

f

f’
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I n t r o d u c t i o n

ı̂

̂
ı̂′

̂′

e=e’

f

f’

5×
[
1 0
0 1

] [
0.9487
0.3162

]
=

[
4.7434
1.5811

]
=

[
4 3
1 2

] [
0.9487
0.3162

]
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I n t r o d u c t i o n

ı̂

̂
ı̂′

̂′

e=e’

f

f’

e.v .2 =
[
0.9487
0.3162

]
, λ2 = 5
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I n t r o d u c t i o n

What happens with these vectors?

ev1 ev2

A×

−1

1

 4.7434
1.5811



A2×

−1

1

 23.7171
7.9057


A3×

−1

1

 118.585
39.528


λ 1 5
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D e fi n i t i o n

A real matrix is a rectangular array of real numbers.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . anm


Where aij ∈ R. A is said to be an element of Rm×n

A vector would be then a matrix with only 1 column!
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Let A,B ∈ Rm×n. Let C ∈ Rn×l . Finally, let α ∈ R.
1. [A + B]ij = aij + bij

2. [A · C ]ik =
∑n

j=1 aij · cjk , and it has a dimension m × l
3. [αA]ij = αaij
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D e fi n i t i o n

Let A ∈ Rm×n, A’s transpose, denoted At ∈ Rn×m is such that its elements are:

at
ij = aji

D e fi n i t i o n

Matrix A ∈ Rm×n is said to be squared if n = m

D e fi n i t i o n

Matrix A is said to be symmetric if At = A

D e fi n i t i o n

Matrix A is said to be antisymmetric if At = −A
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D e fi n i t i o n

The Identity is a squared matrix In ∈ Rn×n that has Iij = 0 if i 6= j, and Iij = 1 if i = j.

The identity has a nice property: AIn = ImA = A for any A ∈ Rm×n.

D e fi n i t i o n

Matrix A is invertible, if there is another matrix A−1 such that A · A−1 = A−1 · A = I
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C o n j e c t u r e

Given A,B,C ∈ Rn×n

1. A + B = B + A
2. A(BC) = (AB)C
3. A(B + C) = AB + AC
4. (A + B)t = At + Bt

5. (AB)t = BtAt

6. (At)t = A
7. If A and B are invertible, then AB and BA are invertible as well. Furthermore

(AB)−1 = B−1A−1

8. If A is invertible, then (At)−1 = (A−1)t
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Quick quiz, 15 min, prove points 7 and 8. You can use points 1-6 as true and given.
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S o l u t i o n

7 Start with AB, multiply by A−1 from the left, you are left with
A−1AB = IdB = B. Now multiply by B−1, so you get
B−1A−1AB = B−1IdB = B−1B = Id . Then (B−1A−1)(AB) = Id so it must be
that B−1A−1 = (AB)−1. To complete the proof, you need to show that you can
do the same from the “right”.

8 Start with (A−1A)t = Id t = Id , use property 5 and you get
(A−1A)t = At(A−1)t = Id , then (A−1)t must be the inverse (again the only thing
that is missing is to show that it works if you start with (AA−1)t as well which is
trivial.
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C o n j e c t u r e

The set of the matrices in Rm×n, together with the sum and scalar multiplication is a
vector space.

C o n j e c t u r e

A squared matrix A ∈ Rn×n is invertible if and only if all of its columns are linearly
independent.
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D e fi n i t i o n

Matrix A ∈ Rm×n is upper triangular if it has the following shape:

A =


a11 a12 . . . a1m . . . a1n
0 a22 . . . a2m . . . a2n

0 0
. . . ... . . .

...
0 0 . . . amm . . . amn


That is, it has zeroes below its main diagonal.

C o n j e c t u r e

The set of the upper triangular matrices in Rn×m, with the sum and scalar
multiplication is a vector subspace of Rn×m.
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D e fi n i t i o n

Matrix A is lower triangular if At is upper triangular.

D e fi n i t i o n

Matrix A is diagonal if it is upper and lower triangular at the same time.

D e fi n i t i o n

The rank of a matrix A, denoted by rank(A) is the maximum number of linearly
independent rows or columns of A.
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A convenient way to write down a system of equations:

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a1nxn = b2

...
... . . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm

It would be AX = B, where,

A =

 a11 . . . a1n
... . . . ...

am1 . . . amn

 X =

 x1
...

xn

 B =

 b1
...

bm


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D e fi n i t i o n

Given a system of equations AX = B,
X̂ ∈ Rn is a particular solution of the system if AX̂ = B.
X0 is an homogeneous solution if AX0 = 0.

Note that for λ ∈ R, A(X̂ + λX0) = AX̂ + λAX0 = B + 0 = B.
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D e fi n i t i o n

The kernel of A ∈ Rm×n is defined as:

Ker(A) := {X ∈ Rn|AX = 0}

C o n j e c t u r e

Ker(A) ⊆ Rn is a vector subspace of Rn

D e fi n i t i o n

The dimension of Ker(A) is called the nullity — or nullspace —, and it is denoted by
Null(A). If Ker(A) = {0}, then Null(A) = 0.

Note that a system of equations as the one shown before, has unique solution only if
Null(A) = 0.
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C o n j e c t u r e

Matrix A ∈ Rn×n is invertible if and only if Null(A) = 0.

C o n j e c t u r e

A ∈ Rn×n is invertible if and only if the system AX = B as a unique solution, for any
B ∈ Rn.
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D e fi n i t i o n

The image of A ∈ Rn×n is defined as:

Im(A) := {Y ∈ Rn|∃X ∈ Rn,Y = AX} ≡ {AX |X ∈ Rn}

C o n j e c t u r e

Let A ∈ Rn×n. Im(A) is a vector subspace of Rn.

D e fi n i t i o n

The dimension of Im(A) is called the range of A. Let’s denote it as R(A).
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C o n j e c t u r e

Let A ∈ Rn×n. R(A) is the number of l.i. columns of A.

C o n j e c t u r e

Consider A ∈ Rn×n. It holds that Null(A) + R(A) = n.

P. Fagandini



D e fi n i t i o n

The quadratic form associated to A is a function QA : Rn → R such that for any
X ∈ Rn,

QA(X) = X tAX ∈ R
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C o n j e c t u r e

For any matrix A ∈ Rn×n, there are always symmetric and antisymmetric matrices S
and T such that

A = S + T

Note: Let S = A+At

2 and T = A−At

2 . While S is symmetric, T is antisymmetric,

C o r o l l a r y

A quadratic form can be represented as

QA(X) = X tSX

with S symmetric.
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Quick quiz! 15 min to prove the corollary.
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S o l u t i o n

Let A = (S + T )

Then QA(X) = X t(S + T )X = X tSX + X tTX
But X tTX ∈ R, so (X tTX)t = X tTX (a number trasposed is the same number).
So you end up that X tTX = (X tTX)t = X tT tX
But T is anytsymmetric so T t = −T ...
Then X tTX = −X tTX , so if X tTX is the number z, you have z = −z, that only
is true for z = 0.
Then QA(X) = X tSX
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D e fi n i t i o n

Let A ∈ Rn×n, symmetric. Consider the quadratic form QA(X) = X tAX . If for any
X ∈ Rn \ {0},

1. QA(X) > 0, A is positive definite,
2. QA(X) ≥ 0, A is positive semi-definite,
3. QA(X) < 0, A is negative definite,
4. QA(X) ≤ 0, A is negative semi-definite.
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D e fi n i t i o n

λ ∈ C is an eigenvalue (or characteristic value) of matrix A ∈ Rn×n if there is a
vector, called eigenvector, Xλ ∈ Rn \ {0} such that

AXλ = λXλ

P. Fagandini



C o n j e c t u r e

Let A ∈ Rn×n, and λ1 and λ2 two eigenvalues of A, with λ1 6= λ2. If V1 in the vector
subspace associated to λ1, and V2 in the vector subspace of λ2 then V1 and V2 are
linearly independent.

C o n j e c t u r e

Given A ∈ Rn×n symmetric, then its eigenvalues are real valued.
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D e fi n i t i o n

The determinant of a squared matrix A is the hyper-volume of the figure formed by
the column vectors of the matrix.

E x a m p l e

Consider the matrices,

A =

(
1/2 2
3/2 1

)
B =

(
1 2
−1 −2

)
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It is easy to see that, given our definition, det(B) = 0. It is also easy to show that
det(A) = |1/2× 1− 3/2× 2| = 5/2.
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How to calculate the determinant of a big matrix? Recursively. Let A ∈ Rn×n. Define
Aij as:

Aij =



a11 . . . a1,j−1 a1,j+1 . . . a1n
...

...
...

...
...

...
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n
ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n

...
...

...
...

...
...

an1 . . . an,j−1 an,j+1 . . . ann


That is, what is left of A after removing row i and column j.
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Then,

det(A) =
n∑

k=1

(−1)i+kaikdet(Aik)

You can choose any i that you prefer.
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C o n j e c t u r e

A squared matrix is invertible if and only if its determinant is different from zero.
Take a finite set of matrices A ⊆ Rn×n, with Ai being the ith element of A then,

det(A1A2 . . .Ak) = det(A1)det(A2) . . . det(Ak)

If A is invertible, then
det(A−1) =

1

det(A)
For any squared A it holds that det(At) = det(A).
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Note that λ is an eigenvalue if

AXλ = λXλ with Xλ 6= 0

so λ is an eigenvalue of A if
(A − λI)Xλ = 0

or Xλ ∈ ker(A − λI), which implies that ker(A − λI) 6= {0}, and therefore (A − λI)
must be not invertible! But if (A − λI) is not invertible, then det(A − λI) = 0.

C o r o l l a r y

λ is an eigenvalue of A if and only if det(A − λI) = 0.
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D e fi n i t i o n

Given A ∈ Rn×n, the characteristic polynomial of A is defined as the function
pA : R→ R such that

pA(λ) = det[A − λI]

So, λ is an eigenvalue of A if pA(λ) = 0
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C o n j e c t u r e

If A is symmetric, then the eigenvectors of different eigenvalues are orthogonal.

For practical reasons, consider the matrix V as the matrix that has in its columns the
eigenvectors of A, and D(λ) the diagonal matrix that contains in the column i , the
eigenvalue that corresponds to the eigenvector in the column i in V .
Note that:

AV = VD(λ) ⇔ A = VD(λ)V−1

Note that given the properties of matrix multiplication

A−1 = VD
(
1

λ

)
V−1

which is one of the fundamental properties of the symmetric matrices.
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C o n j e c t u r e

Given A ∈ Rn×n, symmetric. It holds that,

A = VDV t

With D the diagonal with the eigenvalues of A and V the unit eigenvectors of A.
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C o n j e c t u r e

Let A ∈ Rn×n, symmetric.
1. A is positive definite if all the eigenvalues of A are strictly positive.
2. A is positive semi definite if all the eigenvalues are nonnegative.
3. A is negative definite if all the eigenvalues are strictly negative.
4. A is negative semidefinite if all the eigenvalues are non positive.
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D e fi n i t i o n

A function f : Rn → Rm is linear if, for any X ,Y ∈ Rn, and for any α ∈ R

f (X + Y ) = f (X) + f (Y ), f (αX) = αf (X)
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D e fi n i t i o n

The trace of a square matrix A (tr(A)) is the sum of the elements of its diagonal.
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T h e o r e m

Let A ∈ Rn×n, then:
the product of the eigenvalues of A is equal to its determinant, that is,

det(A) =
n∏

i=1

λi

the sum of the eigenvalues of A is equal to its trace, that is,
n∑

i=1

ai,i =
n∑

i=1

λi

if A is a triangular matrix, then its eigenvalues are the coefficients in the principal
diagonal of the matrix, i.e.,

λi = ai,i
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